BeAGLE: eRD17

Following up from last meeting...

- Evaporation neutrons CAN tag collision geometry for incoherent diffractive e+A
 - Committee requested more details.
- Evaporation neutrons appear to be insufficient to tag coherent vs. incoherent diffraction
 - Look at other options...
- Ongoing effort to include RAPGAP & tune to E665 μ+Xe Streamer Chamber data.
 - Validate BeAGLE! Proposed for FY2018-FY2019

Incoherent Diffraction distributions

Centrality for incoherent diffraction

18x110 GeV e+Pb
$$\rightarrow$$
 e' + J/ ψ + X

Effective thickness seen by γ^* (in fm)

ZDC n background veto inadequate

26-JUL-2018

Remnants for Nnevap=0

Low |t|: The struck nucleon can be recaptured.

$$\gamma^*$$
+²⁰⁸Pb₈₂ $\rightarrow \psi$ +²⁰⁸Pb₈₂+ γ + γ + γ ...

High |t|: The struck nucleon escapes:

$$p + {}^{207}TI_{81}$$
 or $n + {}^{207}Pb_{82}$

Photons from ²⁰⁸Pb₈₂ in lab frame

26-JUL-2018

Detailed studies ongoing.

It is clear that γ 's will be needed for low |t|!

eRD17-BeAGLE

Bigger forward cone?

2-3 photons / per event. Half are in the forward TRF hemisphere: θ <1/7_{Pb} in lab or 8.5 mr for 18x110 (23 mr for 10x40). By momentum conservation: :

WE EXPECT AT LEAST ONE SUCH PHOTON PER EVENT!

Photons for high t?

Around 50% of events have γ in ZDC for eRHIC. Can help, but not good enough on their own.

How about n + ${}^{207}Pb_{82}$?

Neutrons detectable in ZDC for t range of interest!!

26-JUL-2018 eRD17-BeAGLE 10

How about $p + {}^{207}TI_{81}$?

Need to accept all protons with <4.5mr at eRHIC, <12 mr at JLEIC OR the Thallium remnant (0.75% rigidity shift – difficult!).

ZDC n background veto inadequate

26-JUL-2018 eRD17-BeAGLE 12

Backgrounds with 0 evap. neutrons

- Low |t|: $\gamma^* + {}^{208}Pb_{82} \rightarrow \psi + {}^{208}Pb_{82} + \gamma + \gamma + \gamma \dots$
 - Need to detect forward γ (in ZDC at least, ideally θ <1/ γ_{Pb} ~ 23 mr @ JLEIC). ~50-300 MeV scale
- $0.06 < |t| < 0.15 \text{ GeV}^2 : \rightarrow \psi + \frac{207}{9} Pb_{82} + n + \gamma + \gamma + \gamma \dots$
 - Luckily, for |t|<0.15 GeV², the ZDC catches the n!
- $0.06 < |t| < 0.15 \text{ GeV}^2 : \rightarrow \psi + \frac{207}{81} + p + \gamma + \gamma + \gamma + \gamma \dots$
 - Must detect $^{207}\text{TI}_{81}$ ($\Delta(Z/p)$ ~0.75% DIFFICULT!) or p (θ_{eRHIC} <4.5 mr θ_{JLEIC} <12 mr)

User interaction (1)

From the July 2015 EIC R&D Committee Report:

Recommendation: ...

The committee encourages regular interaction between the developer[s] and the expected user community.

Mar. 2018: Baker talk at POETIC8 Satellite workshop: MCEGs

for future ep and eA facilities (Regensberg, Germany)

(eRD20: Aschenauer & Diefenthaler co-organizers)

Sept. 2018: Baker talk at Workshop on short-range correlations at

an Electron-Ion Collider (CFNS BNL)

Note: Still planning for a PRD (Elke & Liang taking the lead).

User interaction (2)

Multiple groups (postdocs/students) are starting to use BeAGLE

Jefferson Lab

```
Morozov, Hyde, Turonski,+MDB+LZ et al. (G. Wei, M.Ehrhart) - Geometry tagging and incoherent diffraction veto @ JLEIC. Jet quenching for fixed target
```

Higinbotham, Hyde, Turonski,+MDB+LZ et al. (F. Hauenstein) – Short-range correlations in e+A @ JLEIC

Furletova (A. Pilloni) - e+D→e' + J/ψ + n + p @ JLEIC Maxwell – spin structure function rate calculations for JLEIC

Brookhaven

EA+MDB+LZ+Alexander Kiselev (W.Chang) Forward nucleons and photons from e+light-ion & e+Pb \rightarrow e' + J/ ψ + X @ eRHIC Thomas Ullrich + Abhay Deshpande et al. (Z. Tu-Goldhaber fellow) e+D \rightarrow e' + J/ ψ + n + p @ eRHIC

User interaction (3)

Detected a common theme in 4 of 6 projects!

Jefferson Lab

Short-range correlations in e+A @ JLEIC e+D \rightarrow e' + J/ ψ + n + p @ JLEIC

Brookhaven

Forward nucleons from e+light-ion

$$e+D\rightarrow e'+J/\psi+n+p$$
 @ eRHIC

All of these projects need a more realistic Fermi momentum distribution than that built into BeAGLE (from DPMJet3). Add that to ToDo list.

Progress & Plans Chart

Feature added or error corrected	12/17	06/18	07/18	Planned
1-8. Early BeAGLE features (see text).	YES	YES	YES	YES
9. Shadowing coherence length	NO	NO	NO	YES
10. Partial shadowing effect	YES	YES	YES	YES
11a. Effective σ_{dipole} for J/ ψ averaged over x & Q ²	YES	YES	YES	YES
11b. Effective σ_{dipole} for ϕ averaged over x & Q^2	YES	YES	YES	YES
11c. Eff. $\sigma_{dipole}(x,Q^2)$ for $V=\psi,\phi,\rho,\omega$ from Sartre (ePb)	NO	NO	NO	YES
11d. Use correct R _{diff} (A-208)(x,Q ²) for V from Sartre	NO	NO	NO	YES
11e. Improved σ_{dipole} for V, if necessary	NO	NO	NO	YES
12. Tune to E665 μA Streamer Chamber data	NO	NO	NO	YES
13. FS p _F for hard process correct	Testing	Partial Partial	YES	YES
14. Kinematic matching between DPMJet&Pythia	YES	YES	YES	YES
15. Protect against very high E* values.	YES	YES	YES	YES
16. Enable nPDF with any value of A,Z (EPS09)	YES	YES	YES	YES
17. Extend $R \rightarrow \sigma_{dipole}$ map to more values of A	NO	NO	YES	YES
18. Tune the t distribution for multiple scattering.	NO	NO	NO	YES
19a. Release α version BeAGLE/RAPGAP	NO	YES	YES	YES
19b-c. Install, test, & release BeAGLE/RAPGAP	NO	NO	NO	YES
19d. Extend RAPGAP to include e+n (w/ H. Jung)	NO	NO	NO	YES
20. Allow diffraction w/ individual V=ψ,φ,ρ,ω	NO	YES	YES	YES
21. Cleanup and document BeAGLE work so far.	NO	NO	NO	YES
22. Update Fermi momentum distributions.	NO	NO	NO	YES
XX. Implement UltraPeripheral Photon Flux	NO	NO	NO	???
XX. Tune BeAGLE to UPC data (RHIC &/or LHC)	NO	NO	NO	???

Finally! Just in time...

Needed for μ +Xe

Programs compatible.

} Key points for January

ψ & φ are rare...

} New

} Postpone

26-JUL-2018

FY2019 plans

- Reduce uncertainty in BeAGLE detector design conclusions by better understanding our tune to FNAL E665 data using RAPGAP in BeAGLE.
 - Nuclear response weak at E665 → weak at EIC.
 - Encoded as long formation time (τ_0 ~5-7 fm/c) in produced particle rest frame for the intranuclear cascade .
 - Do we understand event mix @ E665?
 - Coherent & incoherent μ+A diffraction vs. DIS.
 - Incorporate RAPGAP (e+p diffraction) model in BeAGLE.
 - Tune to E665 μ +Xe event-by-event comprehensive streamer chamber data as well as μ +Pb/Ca neutrons.

The key issue

- From the white paper:
 - Coherent diffraction in eA is a "golden" channel.
 - But to realize it we'll need a good, and well understood detector (RejFac up to 1300!).
 - · May be a key driver for forward detector/IR design.
- BeAGLE with a better description of diffraction

 is essential for properly evaluating the design
 of the forward detectors/lrs.
- So we need to include RAPGAP!

Incorporating RAPGAP

Remaining integration tasks:

- Embed RAPGAP e+p into e+A (incl. Common block integration)
- Validate RAPGAP kinematic consistency

Upgrade RAPGAP to include e+n (w/ Hannes Jung)

- PDFs & Remnant (a la Pythia)
- Consistent kinematics

Hannes Jung, DESY

FY2019 milestones

- January 2019
 - BeAGLE cleanup
 - Full RAPGAP installation
 - Process-dependent e+A cross-sections
- May 2019
 - Compare BeAGLE to E665 Data
- September 2019
 - Tuning complete

FY2019 Budget Proposal

		Effort	Cost to	
Person	Institution	(FTE-year)	Proposal	Remarks
E. Aschenauer	BNL	0.05	\$0	cost covered by BNL
M.D. Baker	MDBPADS[18]	0.25	\$62,400	
J.H. Lee	BNL	0.05	\$0	cost covered by BNL
L. Zheng	CUGW	0.10	\$0	cost covered by CUGW
TOTAL:		0.45	\$62,400	

Table 2: Personnel Budget Breakdown for FY2019

Item	Cost	
Personnel:	\$62,400	= FY2018 + inflation
Zheng Travel	\$4,500	NEW ITEM
Other Travel	\$1,500	NEW ITEM
TOTAL:	\$68,400	

Table 3: Total Budget Breakdown for FY2019

Impact of Reduced Budget

Funding Level	%Funding	Baker FTE	Travel	Project Completion
\$68,400	100%	0.25 FTE	\$6000 Liang+other	FY2019
\$54,720	80%	$0.20~\mathrm{FTE}$	\$4500 Liang only	May extend into FY2020
\$41,040	60%	$0.16 \; \mathrm{FTE}$	\$0 No travel	FY2020

Table 4: Impact of Reduced Funding in FY2019

- Forward Detector/IR design is advanced (pre-CDRs imminent).
- Many studies in progress at both laboratories.
- Need to understand how well these designs address critical e+A physics goals as well as any tradeoffs.
- · A validated/tuned BeAGLE is quite urgent and should not be delayed.

External Support

- Salaries from home institutions:
 E. Aschenauer, J.H. Lee, L. Zheng
- JLAB LDRD: Geometry Tagging at JLEIC
 A. Accardi, MDB, R. Dupre, M. Erhart, C. Fogler,
 C. Hyde, V. Morozov (PI), P. Nadel-Turonski, K. Park,
 A. Sy, T. Toll, G. Wei, LZ
- Proposed JLAB LDRD: Short-range correlations in medium-to-heavy nuclei at JLEIC MDB, D. Higinbotham (PI), O. Hen, C. Hyde, V. Morozov, P. Nadel-Turonski, LZ

Conclusion

- ZDC alone (n+γ) probably NOT enough to tag coherent vs. incoherent diffraction.
 - Option 1: Forward protons (<4.5mr or 12mr)
 - Option 2: Detect Z-1 nuclei (0.75% rigidity change)
 - Option 3: Bigger cone for photons (8.5 or 23 mr)
- BeAGLE use/interest is taking off.
- Proposed upgrade & tune is urgent and timely
 - RAPGAP installation
 - Tune to E665 Streamer Chamber Data

Extras

The nucleus remembers!

Energy conservation!

Central diffractive events excite the nucleus more than peripheral.

ePb 10x100 incoh. diff. (J/ψ)

The hotter (more excited) remnant nuclei emit more evaporation neutrons – which we can detect!

ZDC & impact parameter correlated

Central diffractive events excite the nucleus more than peripheral.

The hotter (more excited) remnant nuclei emit more evaporation neutrons – which we can detect!

ZDC can tag impact parameter!

ePb 10x100 incoh. diff. (J/ψ)

Photons for high t and lower s?

For A=207, 40 GeV/nucleon leads to fairly low energy photons. Will add to the challenge at the lower energy.

O. Hen, G.A.Miller, E. Piasetzky, L.B. Weinstein, Rev. Mod. Phys. 89 (2017) 045002

Some of the relevant E665 data

E665, ZPC 65 (1995) 225

Fermi momentum & eN collision W²

BeAGLE (& DPMJET & Pythia) use on-mass-shell nucleons which sit in a mean-field nuclear binding + Coulomb potential.

In nuclear target rest frame:

$$Q^{\mu} = \{v; 0, 0, sqrt(v^2+Q^2)\}$$
 defined by lepton – nuclear kinematics

$$P^{\mu} = \{M; \ 0, \ 0, \ 0\} \quad OR \quad \{M + \textbf{E}_{kF}; \ \textbf{p}_{xF}, \ \textbf{p}_{yF}, \ \textbf{p}_{zF}\}$$

$$W^{2} = (P+Q)^{2} = 2Mv - Q^{2} + M^{2} \qquad (+2vE_{kF} - 2sqrt(v^{2}+Q^{2})p_{zF})$$

High v limit (v >> M,Q):

$$W^2 \sim 2M_V (1 - p_{zF}/M)$$
 (note that $E_{kF} << p_{zF}$)

26-JUL-2018 eRD17-BeAGLE 33

Math of Fermi momentum post-fix

In Pythia naive Hadronic CMS, we have:

invariant mass-squared W_0^2 & vector $\Sigma p = 0$

Want to expand it to correct $W_F^2 = 2Mv - Q^2 + M^2 + 2vE_{kF} - 2sqrt(v^2 + Q^2)p_{zF}$

Then boost the system with mass W_F to correct 3-momentum using $\beta_i = p_i/W_F$

Scale all hadronic 3-momenta by a common factor $\alpha = 1 + \delta$ to preserve vector $\Sigma p = 0$

$$W_{F} = \sum_{i} \operatorname{sqrt}(\alpha^{2} p_{i}^{2} + m_{i}^{2}) \sim \sum_{i} \operatorname{sqrt}(E_{i}^{2} + 2 \delta p_{i}^{2}) \sim \sum_{i} (E_{i} + \delta p_{i}^{2}/E_{i})$$

$$W_{F} - W_{0} \sim \delta \sum_{i} p_{i}^{2}/E_{i} \quad \text{or } \delta \sim (W_{F} - W_{0})/\sum_{i} (p_{i}^{2}/E_{i})$$

Scale momenta by 1+ δ and iterate (usually twice) until W_F is correct. Note: For N=2, $p_1^2 = p_2^2$ and we have an exact formula.